Particle Filter with Swarm Move for Optimization
نویسندگان
چکیده
We propose a novel generalized algorithmic framework to utilize particle filter for optimization incorporated with the swarm move method in particle swarm optimization (PSO). In this way, the PSO update equation is treated as the system dynamic in the state space model, while the objective function in optimization problem is designed as the observation/measurement in the state space model. Particle filter method is then applied to track the dynamic movement of the particle swarm and therefore results in a novel stochastic optimization tool, where the ability of PSO in searching the optimal position can be embedded into the particle filter optimization method. Finally, simulation results show that the proposed novel approach has significant improvement in both convergence speed and final fitness in comparison with the PSO algorithm over a set of standard benchmark problems.
منابع مشابه
Task Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کاملParticle Filter Improved by Genetic Algorithm and Particle Swarm Optimization Algorithm
Particle filter algorithm is a filtering method which uses Monte Carlo idea within the framework of Bayesian estimation theory. It approximates the probability distribution by using particles and discrete random measure which is consisted of their weights, it updates new discrete random measure recursively according to the algorithm. When the sample is large enough, the discrete random measure ...
متن کاملOPTIMIZATION OF PLACEMENTVOLTAGE OF PIEZOELECTRIC ACTUATORS ON AN L-SHAPE BEAM USING PARTICLE SWARM OPTIMIZATION ALGORITHM
In this paper, controlling the location of the tip of an L-shape beam under gravity field is investigated. The beam is covered with piezoelectric patches. The gravity filed moves the tip of beam downward and the actuators with induced voltage move the tip to the previous location. to optimize the best location and voltages for actuators, the particle swarm optimization algorithm code is develop...
متن کاملDesign of Digital Low Pass Fir Fiter Using Hybrid Particle Swarm Optimization
This paper presents an optimal design of linear phase digital low pass finite impulse response (FIR) filter using hybrid particle swarm optimization (HPSO) technique where PSO has been hybridized with exploratory search technique. PSO is a simple, population based robust global search algorithm capable of handling large search space. Exploratory move is a gradient free deterministic algorithm, ...
متن کامل